
Journal of Economic Theory and Econometrics, Vol. 30, No. 1, Mar. 2019, 96–142

Quantile Dependence between Stock Markets and
Its Application in Volatility Forecasting∗

Heejoon Han†

Abstract This paper examines quantile dependence between international stock
markets and evaluates its use for improving volatility forecasting. First, we adopt
the cross-quantilogram, a correlation statistic of quantile hit processes, and an-
alyze quantile dependence and directional predictability between the US stock
market and stock markets in the UK, Germany, France and Japan. Second, we
consider a simple quantile-augmented volatility model that accommodates the
quantile dependence and directional predictability from the US market to these
other markets. The quantile-augmented volatility model provides superior in-
sample and out-of-sample volatility forecasts. Finally, we set up a generalized
quantile-based approach to improve volatility forecasting for a wide class of as-
set portfolios.

Keywords Quantile dependence, Cross-quantilogram, Spillover, Volatility
Forecasting

JEL Classification C14, C22, G12

∗I would like to thank Robert F. Engle, Soosung Hwang, Chang Sik Kim, Simone Menganelli
and the seminar participants at the 9th SoFiE (Society of Financial Econometrics) annual confer-
ence (Hong Kong), Time Series Workshop on Macro and Financial Economics (Seoul), the 10th
Cross-Strait Conference on Statistics and Probability (Chengdu), Korean Econometric Society
Summer Meeting (Jeju), Hanyang University, University of Missouri and Sungkyunkwan Uni-
versity for their valuable comments and suggestions. This work was supported by the Ministry
of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-
2016S1A5A8019134).
†Department of Economics, Sungkyunkwan University (E-mail: heejoonhan@skku.edu).

Received January 10, 2019, Accepted March 15, 2019



HEEJOON HAN 97

1. INTRODUCTION

In many circumstances, investors are interested in dependence between fi-
nancial markets such as dependence between international stock markets, de-
pendence between currency markets, dependence between stock markets and
bond markets or dependence between stock markets and commodity markets. It
is essential for investors to have an understanding of the dependence between
financial markets because this can be used to improve asset allocation and risk
management. Therefore, volatility spillover, co-movement and contagion of fi-
nancial markets have been extensively investigated in the literature. Researchers
typically adopted a vector autoregressive model, a multivariate generalized au-
toregressive conditional heteroskedasticity (GARCH) model or a combination of
both models to analyze volatility spillover, co-movement and contagion of finan-
cial markets (Baele (2005), Dungey et al. (2005), Forbes and Rigobon (2002),
Karolyi (1995), King et al. (1994) and the references therein). Additionally, a
copula model or a combination of a copula and an existing multivariate model
has been used to investigate dependence between financial markets (Garcia and
Tsafack (2011), Lee and Long (2009), and Rodriguez (2007), among others).

While these existing methods generally depend on parametric modeling of
conditional variance, conditional correlation or copula of multivariate financial
time series, researchers recently introduced some methods that do not require
any modeling and focus directly on the quantile dependence of financial time
series (Barunı́k and Kley (2015), Cappiello et al. (2014), Han et al. (2016), Li et
al. (2015), Schmitt et al. (2015), and Sim and Zhou (2015)). These works pro-
vide various new methods to measure quantile dependence that is not captured
by classical measures based on linear correlation. Some methods such as that
used in Cappiello et al. (2014) test contagion or constant correlation between
financial time series, which can provide useful implications for asset allocation.
However, little research has explored beyond basic measurement of quantile de-
pendence between financial time series to investigate how to directly make use
of measured quantile dependence in volatility forecasting, asset allocation or risk
management.

The main motivation of this paper is to address this gap. We first measure
detailed quantile dependence between stock markets and examine quantile-based
directional predictability between stock markets. Using the quantile-based de-
pendence and directional predictability, we introduce and evaluate a method to
improve volatility forecasting in each stock market. Finally, we generalize these
results and set up a quantile-based approach to improve volatility forecasting for
a wide class of asset portfolios.
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We consider the daily S&P 500 index, FTSE 100 index, DAX index, CAC 40
index and Nikkei 250 index and examine quantile dependence between the US
stock return and stock return series for the UK, Germany, France and Japan, i.e.
quantile dependence between US-UK, US-Germany, US-France or US-Japan
bivariate stock market returns. To examine detailed quantile-based relationships
between stock markets, we adopt the cross-quantilogram recently proposed by
Han et al. (2016). The cross-quantilogram is a correlation statistic of quantile
hit processes and measures dependence between the quantile range of one time
series and the quantile range of the other time series. Therefore, it can pro-
vide quantile-based dependence between two financial markets. One can set up
a cross-quantilogram for specific quantile ranges of interest or for an arbitrary
large lag, and it is simple to interpret these results. The cross-quantilogram was
recently adopted in Baumöhl and Lyócsa (2017), Jiang et al. (2016), Shahzad et
al. (2017), Todorova (2017) and Yifan (2017) to measure quantile dependence
between financial time series.

The results based on the cross-quantilogram show the following. First, neg-
ative spillover (lower-quantile dependence between stock markets) is stronger
than positive spillover (upper-quantile dependence between stock markets). The
cross-quantilogram has higher values and remains significant for larger lags when
we consider lower-quantile dependence between stock markets. Second, there
exists stronger quantile dependence or directional predictability from the US
stock market to the UK, Germany, France and Japan markets than the other way
around. Third, when stock returns are devolatized and standardized residuals
are used, directional predictability remains significant only at the first lag in the
lower or upper quantile from the US market to other markets (UK, Germany,
France or Japan), but it disappears from other markets (UK, Germany, France or
Japan) to the US market.

Using these findings, we consider a simple way to improve volatility fore-
casting. In particular, we use the cross-quantilogram results of standardized
residuals and modify a volatility model to exploit the quantile-based directional
predictability from the US market to markets in the UK, Germany, France and
Japan. In a volatility model for stock markets in the UK, Germany, France and
Japan, we introduce an additional multiplicative component that can be predicted
from a lower-quantile or upper-quantile event in the US stock market. We show
that the quantile-augmented volatility model provides superior in-sample and
out-of-sample volatility forecasts regardless of the choice of a base volatility
model or a forecasting horizon. We also find that our multiplicative model pro-
vides better volatility forecasts than the usual additive GARCH-X model even
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if both models use the same information. Finally, based on these results, we
set up and discuss a generalized quantile-based approach to improve volatility
forecasting for a wide class of asset portfolios.

The rest of the paper is organized as follows. Section 2 explains the cross-
quantilogram and related Box-Ljung type test statistic, and provides a simulation
study showing how cross-quantilogram measures quantile dependence of data
generated by various copulas. Sections 3 provides the data description and re-
sults on quantile dependence between stock markets. It presents results of auto-
quantilogram and cross-quantilogram for stock return series and standardized
residuals. Section 4 presents the application of quantile dependence to volatil-
ity forecasting and Section 5 discusses a generalized quantile-based approach
to improve volatility forecasting for a wide class of asset portfolios. Section 6
concludes the paper.

2. MEASURE OF QUANTILE DEPENDENCE

2.1. CROSS-QUANTILOGRAM AND ITS ADVANTAGES

Linton and Whang (2007) introduced the (auto-) quantilogram to measure
dependence in different parts of the distribution of a stationary time series based
on the correlogram of quantile hits. Han et al. (2016) developed a multivariate
version called the cross-quantilogram. The cross-quantilogram can be used 1)
to measure quantile dependence between two series, 2) to test directional pre-
dictability between two series, and 3) to test model specification. They proposed
and investigated the stationary bootstrap procedure and a self-normalized ap-
proach to construct the confidence intervals of the cross-quantilogram.

As explained in Linton and Whang (2007) and Han et al. (2016), the ad-
vantages of the cross-quantilogram are as follows: 1) it is simple to interpret, 2)
no moment condition is required for time series, 3) it captures the properties of
a joint distribution, 4) it can consider arbitrary lags. The second advantage is
particularly important when we use the cross-quantilogram to analyze financial
time series. While commonly used models such as multivariate GARCH models
in general assume the existence of finite fourth moments of time series, it is well
known that finite fourth moments do not exist for most stock return or exchange
rate return series due to heavy tails. The appeal of cross-quantilogram is its sim-
plicity compared to the existing methods. If one uses a method based on copula
as in Reboredo and Ugolini (2016), one should specify and estimate a copula
for each lag k and there may be a misspecification error. For example, if one
is interested in quantile dependence between y1t and y2,t−k for k = 1,2, · · · ,22
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(one month interval for daily data), one should specify and estimate a copula for
each k (total 22 times). On the contrary, cross-quantilogram can be very eas-
ily calculated for all lag k at one time. Moreover, since cross-quantilogram is a
nonparametric statistic based on quantile hits, there is no misspecification error.

We let qi,t(τi) be either τi conditional or unconditional quantile of yi,t . The
cross-quantilogram measures dependence between two events {y1,t < q1,t(τ1)}
and {y2,t−k < q2,t−k(τ2)} for an arbitrary pair of τ = (τ1,τ2)

′ and a positive in-
teger k. In the literature, {1[yi,t < qi,t(·)]} is called the quantile-hit or quantile-
exceedance process for i = 1,2, where 1[·] denotes the indicator function.

The cross-quantilogram is the cross-correlation of the quantile-hit processes
and is defined as

ρτ (k) =
E [ψτ1 (y1,t −q1,t(τ1))ψτ2 (y2,t−k−q2,t−k(τ2))]√

E
[
ψ2

τ1
(y1,t −q1,t(τ1))

]√
E
[
ψ2

τ2
(y2,t−k−q2,t−k(τ2))

] (1)

for k = 0,±1,±2, . . . , where

ψτi(yi,t −qi,t(τi)) = 1[yi,t < qi,t(τi)]− τi.

Its sample counterpart is

ρ̂τ(k) =
∑

T
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,

where q̂i,t(τi) is the estimate of either τi conditional or unconditional quantile
of yi,t . As an example, Figure 1 provides a pair of events: {y1,t < q1,t(τ1)} for
τ1 = 0.05 and {y2,t−k < q2,t−k(τ2)} for τ2 = 0.5. Given y2,t−k is located below
its median, the cross-quantilogram ρτ(k) is zero if the probability of y1,t being
located below its 0.05 quantile is the same as 0.05.

Instead of two events {y1,t < q1,t(τ1)} and {y2,t−k < q2,t−k(τ2)}, one may be
interested in measuring the dependence between two events {q1,t(τ

l
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]
. Figure 2 provides various events {qi,t(τ
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h
i )}

for different quantiles for τ l
i and τh

i . To obtain the dependence of such events,
one can use an alternative version of the cross-quantilogram that is defined by
replacing ψτi(yit −qi,t(τi)) in (1) with
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.
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See footnote 4 in Han et al. (2016). This alternative version could be easier
to interpret and therefore we will adopt this alternative version of the cross-
quantilogram in this paper.

If ρτ(k) = 0, there is no dependence or directional predictability from an
event {q2,t−k(τ

l
2) ≤ y2,t−k ≤ q2,t−k(τ

h
2 )} to an event {q1,t(τ

l
1) ≤ y1,t ≤ q1,t(τ

h
1 )}.

If ρτ(k) 6= 0, there exists quantile dependence or directional predictability be-
tween two events. If ρτ(k)> 0, it is more likely for y1,t to be located in the range
[q1,t(τ

l
1),q1,t(τ

h
1 )] when y2,t−k is located in the range [q2,t−k(τ

l
2),q2,t−k(τ

h
2 )]. If

ρτ(k) < 0, it is less likely for y1,t to be located in the range [q1,t(τ
l
1),q1,t(τ

h
1 )]

when y2,t−k is located in the range [q2,t−k(τ
l
2),q2,t−k(τ

h
2 )]. The stationary boot-

strap inference procedure is still valid for this alternative version, as mentioned
in Han et al. (2016) and, therefore, we will use it to construct confidence bands.1

Using the cross-quantilogram, we can conduct related Portmanteau tests.
Suppose that τ ∈T and p are given. One may be interested in testing

H0 : ρτ(1) = · · ·= ρτ(p) = 0,

H1 : ρτ(k) 6= 0 for some k ∈ {1, . . . , p}.

For this test, the Box-Pierce type test statistic Q̂(p)
τ = T ∑

p
k=1 ρ̂2

τ (k) can be used.
We will use the Box-Ljung version Q̌(p)

τ = T (T +2)∑
p
k=1 ρ̂2

τ (k)
/
(T − k) in this

paper because it has better finite sample performance for a large p and a small
sample size. Han et al. (2016) also analyze the sup-version test statistic over a
set of quantiles and the partial cross-quantilogram.

2.2. COPULA AND CROSS-QUANTILOGRAM

We conduct a simulation study to show how cross-quantilogram measures
quantile dependence of data generated by various copulas. We consider Gaus-
sian, Clayton, Frank, Gumbel and Student’s t copulas that are commonly used in
the literature. The Gaussian and Student’s t copulas belong to elliptical copulas
and the rest copulas (Clayton, Frank and Gumbel) are classified as Archimedian
copulas. It is well known in the literature that dependence between two series
can vary across a quantile even if linear correlation between two time series is
constant. Figure 3 provides six scatter plots of data generated by various copulas

1We conducted a Monte Carlo simulation study for this alternative version of cross-
quantilogram. As in section 5 in Han et al. (2016), we examined the finite-sample performance of
the Box-Ljung test statistics based on the stationary bootstrap procedure, which showed that the
test had reasonably good size and power performance in finite samples. The simulation results are
available upon request.
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and shows that, except for Figure 3(a), dependence between two series depends
on a specific quantile range.

For all v1,v2 in [0,1], the Gaussian copula is defined by

C (v1,v2) =
∫

Φ−1(v1)

−∞

∫
Φ−1(v2)

−∞

1
2π
√

1−κ2
exp
(
−s2−2κst + t2

2(1−κ2)

)
dsdt

where Φ is the univariate standard normal distribution function and κ is the linear
correlation coefficient. κ = 0 implies independence between v1 and v2. Figure
3(a) provides a scatter plot of v1 and v2 generated by the Gaussian copula with
κ = 0. Figure 3(b) is that with κ = 0.7.

The Clayton copula is defined as

C (v1,v2) =
(
v−κ

1 + v−κ

2 −1
)−1/κ

for κ ∈ (0,∞) and κ → 0 leads to independence between v1 and v2. It is an
asymmetric copula with higher probability concentrated in the lower quantile
and therefore exhibits stronger dependence in the lower quantile than in the upper
quantile. Figure 3(c) provides a scatter plot v1 and v2 generated by the Clayton
copula with κ = 2.

The Frank copula is defined as

C (v1,v2) =−
1
κ

ln
(

1+
(exp(−κv1)−1)(exp(−κv2)−1)

exp(−κ)−1

)
for κ ∈ (−∞,+∞) and κ→ 0 leads to independence. Unlike the Clayton copula,
it is symmetric. Figure 3(d) provides a scatter plot v1 and v2 generated by the
Frank copula with κ = 7.

The Gumbel copula is defined by

C (v1,v2) = exp
[
−
{
(− lnv1)

κ +(− lnv2)
κ
}1/κ

]
for κ ∈ (1,∞) and κ = 1 implies independence. In contrast to the Clayton copula,
it is an asymmetric copula with higher probability concentrated in the upper
quantile and exhibits stronger dependence in the upper quantile than in the lower
quantile. Figure 3(e) provides a scatter plot v1 and v2 generated by the Gumbel
copula with κ = 2.

The Student’s t copula is defined by

C (v1,v2) =
∫ t−1

κ2
(v1)

−∞

∫ t−1
κ2

(v2)

−∞

1

2π

√
1−κ2

1

(
1+

s2−2κ1st + t2

κ2(1−κ2
1 )

)− κ2+2
2

dsdt
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where t−1
κ2

is the inverse of the CDF of the standard univariate Student’s t dis-
tribution with degree of freedom κ2 and κ1 is the linear correlation coefficient.
Figure 3(f) provides a scatter plot v1 and v2 generated by the Student’s t copula
with κ1 = 0.7 and κ2 = 3. For more details on these copulas, see Joe (1997) and
Nelsen (2006).

For each copula, we generate data {v1,t ,v2,t} with sample size 2,000 and
calculate sample cross-quantilogram for various quantile ranges;
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We let
[
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1,τ
h
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=
[
τ l

2,τ
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]
and set

[
τ l

i ,τ
h
i
]

to be [0,0.1], [0.1,0.2], · · · , or [0.9,1.0].
After repeating this procedure 10,000 times, we obtained average of sample
cross-quantilograms for each quantile range, which are provided in Table 1.2

For Gaussian copula with κ = 0, two series v1,t and v2,t are independent.
As shown in Figure 3(a), there exists no dependence for all quantile ranges.
Therefore, cross-quantilogram is supposed to be zero for each quantile range,
which we can confirm in the first row of Table 1. For example, when v2,t is
located in [0,0.1] quantile range, the percentage of v1,t that is also located in the
same quantile range is 10% (same as the percentage of [0,0.1] quantile range).
This makes the value of cross-quantilogram be zero.

On the other hand, for the rest copulas in Figure 3, there exists dependence
for certain quantile ranges and, more importantly, the degree of quantile de-

2It should be noted that the cross-quantilogram ρτ (0) for τ =
[
τ l

i ,τ
h
i
]
= [0,0.1] or [0.9,1] in

Table 1 does not measure the tail dependence defined in the extreme value theory. Tail dependence
is a measure of the dependence between extreme events, and lower tail dependence λ L and upper
tail dependence λU are defined as the following limits:

λ
L = limτ→0+ P

[
v1 ≤ F−1

1 (τ)|v2 ≤ F−1
2 (τ)

]
λ

U = limτ→1− P
[
v1 > F−1

1 (τ))|v2 > F−1
2 (τ)

]
where Fi is the distribution function of vi. For dependence of such extreme quantiles, Davis and
Mikosch (2009) introduced the extremogram. The Gaussian and Frank copulas impose zero tail
dependence. For the Clayton copula, λ L = 2−1/κ and λU = 0. For the Gumbel copula, λ L = 0

and λU = 2−21/κ . For the Student’s t copula, λ L = λU = 2tκ1+1

(
−
√
(κ1 +1) 1−κ2

1+κ2

)
as shown

in Demarta and McNeil (2005, Proposition 1).
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pendence is not constant across a quantile range. Table 1 shows that cross-
quantilogram properly measures such a varying quantile dependence. For ex-
ample, Figure3(b) shows that the area for v1 ∈ [0,0.1] and v2 ∈ [0,0.1] is more
dense than that for v1 ∈ [0.4,0.5] and v2 ∈ [0.4,0.5]. This indicates that depen-
dence between v1 and v2 in the former area is stronger than that in the latter area.
When v2 ∈ [0,0.1], there are more v1 located in the range of [0,0.1] and this leads
to a higher value of cross-quantilogram. On the other hand, when v2 ∈ [0.4,0.5],
v1 is more widely located, which leads to a lower value of cross-qauntilogram.

Figure 3(c) exhibits the case of Clayton copula with κ = 2, which shows
that dependence of two series in the lower-quantile is much stronger than that in
mid-quantile or upper-quantile. As shown in Figure 3(c), when v2,t is located in
[0,0.1] quantile range v1,t is also likely to be located in the same quantile range.
But such a strong dependence does not appear in mid-quantile ranges such as
[0.4,0.5] or [0.5,0.6] quantile range. In Table 1, the cross-quantilogram in [0,0.1]
quantile range is 0.68, which is much higher than 0.17 in [0.9,1] quantile range.
Meanwhile, the cross-quantilogram is close to zero in mid-quantile ranges such
as [0.4,0.5] or [0.5,0.6] quantile range because dependence is very weak in mid-
quantile ranges.

Similarly in the rest copulas, dependence between two series varies across
a quantile range and the results in Table 1 show that cross-quantilogram prop-
erly measures quantile-dependence of two series. For the case of Gumbel copula
with κ = 2 in Figure 3(e), dependence in the upper-quantile is much stronger
than that in mid-quantile or lower-quantile and the values of cross-quantilogram
correspond to such a varying quantile dependence. For the case of Student’s
t copula in Figure 3(f), dependence in both tails is much stronger and, corre-
spondingly, the values of cross-quantilogram are high in both [0,0.1] and [0.9,1]
quantile ranges.

3. QUANTILOGRAM ANALYSIS

3.1. DATA AND SETUP

We investigate quantile dependence and directional predictability between
the US stock market and stock markets in the UK, Germany, France and Japan,
i.e. quantile dependence and directional predictability between US-UK, US-
Germany, US-France and US-Japan bivariate stock market returns. We con-
sider the daily S&P 500 index, FTSE 100 index, DAX index, CAC 40 index and
Nikkei 250 index. To calculate the cross-quantilogram between the US stock re-
turn and the stock return series for the UK, Germany, France and Japan, we only
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consider days t for which we have observations from both indices for each pair.
The sample period and sample size for each pair of indices is given in Table 2.3

We consider samples until the end of 2007 so that strict stationarity holds for the
data.4 We demean each stock return series by subtracting its sample mean.

We let τi denote a quantile range
[
τ l

1,τ
h
1

]
in this section. The quantile range

of stock return τi is set to be [0,0.05], [0.05,0.1], [0.1,0.2], [0.2,0.4], [0.4,0.6],
[0.6,0.8], [0.8,0.9], [0.9,0.95] or [0.95,1]. We first let τ1 = τ2 for the next two
subsections and consider the case with τ1 6= τ2 later. We let lag k = 1, . . . ,20.
We use the stationary bootstrapping procedure by Politis and Romano (1994)
to obtain confidence intervals based on 1,000 bootstrap replicates. The tuning
parameter is chosen by adapting the rule suggested by Politis and White (2004)
(and later corrected in Patton et al. (2009)).

3.2. AUTO-QUANTILOGRAM AND CROSS-QUANTILOGRAM

We first examine the auto-quantilogram in the US stock market and the UK
stock market. The results for the German, French or Japanese stock market are
in general similar to those for the UK stock market and, therefore, we do not
include them in the paper. Figures 4(a) and 4(b) show the auto-quantilogram
and the Box-Ljung test statistic for the S&P 500 index return series. The auto-
quantilogram is significantly positive at some lags for τ1=[0,0.05], [0.4,0.6] or
[0.95,1.0], which makes the Box-Ljung test statistic in Figure 4(b) significant for
the same quantile range τ1.

Figures 5(a) and 5(b) present the auto-quantilogram and the Box-Ljung test
statistic for the FTSE 100 index return series. The results of the UK stock market
are in general similar to those of the US stock market. For the lower-quantile or
upper-quantile (τ1=[0,0.05] or [0.95,1.0]) and the mid-range (τ1=[0.4,0.6]), the
auto-quantilogram is significantly positive for some lags.

Next, we investigate the cross-quantilogram between the US stock market
and the UK stock market. Figures 6(a) and 6(b) provide the cross-quantilogram
and the Box-Ljung test statistic from the US stock market to the UK stock mar-
ket, i.e., y1,t is the FTSE 100 index return and y2,t−k is the S&P 500 index return.
This shows that there exists directional predictability from the US market to
the UK market for various quantile ranges. When we consider only the first lag,
k = 1, the cross-quantilogram is significantly positive for τ1=[0,0.05], [0.05,0.1],
[0.1,0.2], [0.9,0.95] or [0.95,1.0].

3The data set is from realized library 0.1 by the Oxford-Man Institute.
4To the best of our knowledge, all existing methods to measure quantile dependence of time

series require strict stationarity for valid inference.
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It is not surprising to note that the quantile dependence is asymmetric. For
the lower-quantile (τ1=[0,0.05]), the cross-quantilogram exhibits much higher
values and it is significant for larger lags. This implies that when there is a very
large negative loss in the US stock market, it is more likely that there is also a
very large loss in the UK stock market for quite a long time. Table 4 provides the
value of ρ̂τ1(1), the cross-quantilogram at the first lag, for the lower-quantile and
the upper-quantile; it is 0.25 for the lower-quantile (τ1=[0,0.05]) and 0.13 for
the upper-quantile (τ1=[0.95,1.0]). This implies that the negative spillover (risk
spillover) is stronger than the positive spillover. Such an asymmetric dependence
is in accordance with what we commonly observe in international stock markets
and has been reported in the financial literature. See Ang and Chen (2002), Das
and Uppal (2004), Garcia and Tsafack (2011), Longin and Solnik (2001), Poon
et al. (2004) and references therein.

Figures 7(a) and 7(b) present the cross-quantilogram and the Box-Ljung test
statistic from the UK stock market to the US stock market, i.e., y1,t is the S&P
500 index return and y2,t−k is the FTSE 100 index return. Compared to the
results in Figures 6(a) and 6(b), the dependence is much weaker. The cross-
quantilogram in general has a lower value and is significant at some lags only
for τ1=[0,0.05], [0.4,0.6] or [0.95,1.0]. The cross-quantilogram from the UK
market to the US market exhibits similar patterns to the auto-quantilogram for
the US market in Figure 4(a).

3.3. RESULTS OF DEVOLATIZED RETURN SERIES

The results in the previous subsection show that dependence or predictabil-
ity still exists from the UK stock market to the US stock market despite it be-
ing much weaker than the case from the US market to the UK market. How-
ever, the auto-quantilogram in the US market exhibits similar patterns to the
cross-quantilogram from the UK market to the US market, while it is obviously
different from the cross-quantilogram from the US market to the UK market.
Therefore, the quantile dependence from the UK stock return to the US stock
return could be an artifact due to persistence and synchronicity in the marginal
volatilities of the two stock return series. As discussed in Section 3 in Davis et
al. (2013), this phenomenon is similar to the well-known issue with the cross-
correlation function of linear bivariate time series. Unless one or all time series
are whitened, the cross-correlation may appear to be spuriously significant (see
Chapter 11 in Brockwell and Davis (1991)).

Hence, in this subsection, we devolatize each stock return series and examine
the cross-quantilogram using standardized residuals. For each return series, we
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estimate the GJR-GARCH(1,1) model:

yi,t = σi,tεi,t ,

σ
2
i,t = ω +αy2

i,t−1 + γy2
i,t−1I(yi,t−1 < 0)+βσ

2
i,t−1.

We adopt the GJR-GARCH model to accommodate the asymmetric relationship
between stock return and volatility. The innovation εi,t is is assumed to be iid
(0,1) and therefore the standardized residual ε̂i,t = yi,t/σ̂i,t is presumed to be
serially uncorrelated. Testing serial correlation in the standardized residual is one
of the most common ways to check model specification in the literature. Table
3 reports the ‘usual’ Ljung-Box Q-statistic based on auto-correlations of ε̂i,t or
ε̂2

i,t . For all stock return series, the p-values of the Ljung-Box Q-statistic for lag
10 or 20 are larger than 0.05. This shows that ε̂i,t or ε̂2

i,t are serially uncorrelated
and suggests that the GJR-GARCH model is an appropriate volatility model for
this return series.

Now we use the standardized residual instead of the stock return series and
conduct quantilogram analysis. Figures 8(a)-9(b) provide the auto-quantilogram
and the Box-Ljung test statistic using the standardized residual ε̂i,t for the US
market or the UK market. The auto-quantilogram is insignificant in most cases
for both stock markets, which is in accordance with the results of the ‘usual’
Ljung-Box Q-statistic on ε̂i,t or ε̂2

i,t in Table 3 and suggests the GJR-GARCH
model is appropriate for modeling each stock return series. Poon et al. (2004)
also used an asymmetric version of the GARCH(1,1) model to filter return series
and showed that tail indices reduced for filtered return series.

Figures 10(a) and 10(b) present the cross-quantilogram and the Box-Ljung
test statistic from the US market to the UK market using the standardized resid-
ual, i.e. y1,t is the standardized residual for the FTSE 100 index return and y2,t−k
is that for the S&P 500 index return. The cross-quantilogram has a large posi-
tive value at the first lag for the lower-quantile (τ1=[0,0.05]), while it is mostly
insignificant in the rest of the cases. Even after devolatizing the returns series,
there still exists directional predictability from the US market to the UK market
in the lower-quantile. Figures 11(a) and 11(b) provide the cross-quantilogram
and the Box-Ljung test statistic from the UK market to the US market using the
standardized residual, i.e. y1,t is the standardized residual for the S&P 500 index
return and y2,t−k is that for the FTSE 100 index return. The cross-quantilogram
is insignificant in almost all cases and consequently the Box-Ljung test statistic
is insignificant in all cases.

When we devolatize only one stock return series, the results are in general
similar. For example, when y1,t is the standardized residual for the FTSE 100



108 QUANTILE DEPENDENCE AND VOLATILITY FORECASTING

index return and y2,t−k is the S&P 500 index return itself, predictability still
exists at the first lag for the lower-quantile from the US market to the UK market.
However, when y1,t is the standardized residual for the S&P 500 index return and
y2,t−k is the FTSE 100 index return itself, no predictability exists from the UK
market to the US market in all quantile ranges. It should be emphasized that the
directional predictability from the US market depends on quantile ranges (i.e.,
exists only in the lower-quantile). In the next section, we will exploit such a
quantile dependence from the US market to the UK market to improve volatility
forecasting in the UK stock market.

When one or both stock return series is devolatized, directional predictabil-
ity still appears from the US market to the UK market in the lower-quantile, but
disappears from the UK market to the US market in all quantile ranges. This
could be due to the dominance of the US stock market. Another possibility is the
difference in stock market opening times. The stock market opening times are
Japan (00:00-06:00), UK/Germany/France (08:00-16:30) and US (14:30-21:00)
in GMT. There are two hours of overlap between the European and US stock
market opening times. One may surmise that a shock in the UK market on day t
will be transmitted to the US market on the same day and, consequently, direc-
tional predictability will disappear from the UK market to the US market at the
first lag. However, this does not make sense considering that the US-Japan case
presented in Tables 4 and 5 shows similar results as the US-UK case despite no
overlap between the US and Japan stock market opening times. We conjecture
that the market dominance of the US causes large significant values of the cross-
quantilogram at the first lag for tails from the US market to each stock market in
Europe and Japan.

When we replace the UK stock market with the German or French stock mar-
ket, the cross-quantilogram exhibits similar patterns as the US-UK case. Table
4 provides the cross-quantilograms at the first lag from the US stock market to
each stock market and Table 5 presents those from each stock market to the US
stock market. For example, when we consider the US-Germany case, we observe
the following: 1) dependence is stronger for the case from the US market to the
German market than the other way around, 2) the negative spillover is stronger
than the positive spillover, 3) when the standardized residual is used, directional
predictability still exists in both tails from the US market to the German market,
but disappears from the German market to the US market.

There is an interesting difference in the US-Japan case. The positive spillover
from the US market to the Japanese market is similar to the negative spillover,
i.e., ρ̂τ(1) = 0.14 for τ1=[0,0.05] and ρ̂τ(1) = 0.15 for τ1=[0.95,1.0] when stan-
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dardized residuals are used, whereas the negative spillover is stronger from the
US market to three European markets. Figures 12(a) and 12(b) present the cross-
quantilogram from the US market to the Japanese market. When we use the
standardized residuals from the GJR-GARCH model, Figure 12(b) shows that
the cross-quantilogram is significantly positive for both tails at the first lag.

3.4. RESULTS OF CROSS-QUANTILE RANGES

Instead of letting τ1 = τ2, we now consider the case with τ1 6= τ2. We let the
quantile range of the US stock market τ2 be either [0,0.05] or [0.95,1.0]. We set
the quantile range of the UK stock market τ1 to be [0,0.05], [0.05,0.1], [0.1,0.2],
[0.2,0.4], [0.4,0.6], [0.6,0.8], [0.8,0.9], [0.9,0.95] or [0.95,1] as in previous sub-
sections.

First, we examine dependence and directional predictability from the lower-
quantile event in the US market to various quantile ranges of the UK stock mar-
ket. Figure 13(a) presents the cross-quantilogram from the US market to the UK
market, i.e., y1,t is the FTSE 100 index return, y2,t−k is the S&P 500 index return
and τ2=[0,0.05]. The first plot in the first row in Figure 13(a) is identical to that
in Figure 6(a) where τ1 = τ2 =[0,0.05]. For mid-quantile ranges of the UK mar-
ket (τ1=[0.2,0.4], [0.4,0.6] or [0.6,0.8]), the cross-quantilogram is significantly
negative for some lags. This means that it is less likely for the UK stock return
to be located in mid-quantile ranges when there is a large loss in the US mar-
ket at day t − k. For the upper-quantile of the UK stock market (τ1=[0.95,1]),
the cross-quantilogram is close to zero and insignificant at the first lag but it
is mostly significantly positive from the second lag to the last lag. This could
be due to the bouncing effect after a large negative shock. It is interesting to
note that values of the cross-quantilogram are higher in the upper-quantile than
in the lower-quantile from the second lag, while the value is very high in the
lower-quantile only at the first lag.

Second, we consider the case from the upper-quantile event in the US mar-
ket. Figure 13(b) presents the cross-quantilogram from the US market to the UK
market, i.e., y1,t is the FTSE 100 index return, y2,t−k is the S&P 500 index return
and τ2=[0.95,1]. The last plot in the third row in Figure 13(b) is identical to that
in Figure 6(a) where τ1 = τ2 =[0.95,1]. In general, the dependence is weaker
than the case in Figure 13(a). On various quantile ranges of the UK stock market
return, a large negative shock in the US stock market has a stronger influence
than a large positive shock. For τ1=[0.9,0.95], the cross-quantilogram is signifi-
cantly positive at the first lag. The figure shows that, when there is a large gain
in the US stock market, it is more likely for the UK stock market to have a large
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or a relatively large gain on the next day.
Next, we use the standardized residuals from the GJR-GARCH model and

examine the same cross-quantile range aspects. When the standardized resid-
uals are used, the cross-quantilogram is mostly insignificant except for some
quantile ranges at the first lag. Figure 14(a) considers the lower-quantile case
corresponding to Figure 13(a). At the first lag, the cross-quantilogram is signifi-
cantly positive for τ1=[0,0.05], [0.05,0.1] or [0.1,0.2]. Figure 14(b) presents the
upper-quantile case corresponding to Figure 13(b). The cross-quantilogram is
mostly close to zero and insignificant.

4. APPLICATION IN VOLATILITY FORECASTING

4.1. QUANTILE-AUGMENTED VOLATILITY MODEL

In this section, we consider a method that uses the findings in the previous
section to improve volatility forecasting. The cross-quantilogram analysis in the
previous section shows that there exists directional predictability from a lower or
upper quantile event in y2,t−1, i.e., US stock return at day t−1 for τ2 = [0,0.05]
or [0.95,1], to the standardized residual ε̂1,t in each market in the UK, Germany,
France and Japan. This result suggests that we can decompose ε̂1,t into two parts;
one is a predictable component from a lower- or upper-quantile event in the US
market and the other is an unpredictable component. It will be more desirable
to accommodate such a predictable component from a lower or upper quantile
event in the US market in modeling volatility in each stock market in the UK,
Germany, France and Japan.

We decompose the standardized residual in a multiplicative way such that

ε̂1,t =
√

f̂1,t η̂1,t where f1,t is the predictable component from a lower or upper
quantile event in y2,t−1 and η1,t is an unpredictable component. Using this, we
consider the following volatility model for stock return series y1,t of each market
in the UK, Germany, France and Japan;

y1,t =
√

h1,t f1,tη1,t

where h1,t is a base volatility model such as the GJR-GARCH model, f1,t is a
function of a lower or upper quantile event in y2,t−1 and η1,t is iid (0,1). The
return series in each market has three multiplicative components. The first com-
ponent h1,t is a function of past values of y1,t and it is possible to specify it as an
another GARCH-type model. While we can model the second component f1,t
in various ways including nonparametric methods, it should be noted that the
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specification of f1,t must properly accommodate the cross-quantilogram results
of standardized residuals in Section 3.3. In this paper, we consider the following
simple specification:

f1,t (δ ) = δ0+δ1y2
2,t−1I(y2,t−1 ≤ q2 (0.05))+δ2y2

2,t−1I(y2,t−1 ≥ q2 (0.95)) (2)

where y2,t is the return series in the US stock market and q2 (0.05) or q2 (0.95)
is 0.05 or 0.95 quantile of y2,t , respectively.5 In this manner, the conditional
variance of y1,t is augmented as

σ
2
1,t = h1,t × f1,t .

If the stock index return in US is below the 5% quantile or above the 95% quan-
tile, the volatility in each stock market will be influenced on the next day. We call
this model the quantile-augmented volatility model (QA model). Compared to a
base volatility model, the QA model accommodates additional information from
the US market in the previous day (particularly a lower or upper quantile event).
We expect that this augmented model will provide better volatility forecasts than
a base volatility model.

Another way to accommodate the directional predictability from the US mar-
ket to each stock market in volatility modeling is to adopt the following additive
GARCH-X model;

y1,t =
√

h1,tη1,t (3)

where

h1,t = ω +αy2
1,t−1 + γy2

1,t−1I(yt−1 < 0)+βh1,t−1

+δ1y2
2,t−1I(y2,t−1 ≤ q2 (0.05))+δ2y2

2,t−1I(y2,t−1 ≥ q2 (0.95))

and η1,t is iid (0,1). The additive GARCH-X model is a typical way to accommo-
date exogenous covariates in volatility modeling (see Han and Kristensen (2015)
and references therein).

5Instead of (2), one can also adopt

f1,t (δ ) = δ0 +δ1y2
2,t−1I(y2,t−1 ≤ q2 (0.05)),

which accounts for only left-tail events in the US stock market. The quantile-augmented model
using this specification provides similar in-sample and out-of-sample forecasting performance as
that adopting (2) for our data set described in Tables 2 and 7.
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Now we discuss the estimation method of the QA model. We can rearrange
the model

y1,t =
√

h1,t (θ) f1,t (δ )η1,t for η1,t ∼ iid(0,1),

into

y2
1,t/h1,t (θ) = f1,t (δ )+u1,t

where u1,t = f1,t (δ )
(

η2
1,t −1

)
. Here u1,t is a Martingale difference sequence.

The estimation procedure is as follows:

1. Estimate θ in the base model h1,t (θ) , for example the GJR-GARCH model,
using the quasi-maximum likelihood estimation (QMLE) method from

y1,t =
√

h1,t (θ)ε1,t for ε1,t ∼ iid(0,1).

2. Rescale the squared return and estimate δ in the following model using
the least squares method

y2
1,t/h1,t(θ̂) = f1,t (δ )+u1,t .

3. Use the estimates from the previous steps and obtain

σ̂
2
1,t = h1,t(θ̂)× f1,t(δ̂ ).

4.2. FORECAST EVALUATION METHOD

We evaluate the within-sample and out-of-sample predictive power of the
QA model. We will compare the within-sample and out-of-sample forecasts of
the base model (GJR-GARCH, σ̂2

t,base = ĥt) and the QA model (σ̂2
t,QA = ĥt× f̂t).

To evaluate the volatility forecast, we adopt the following standard procedure.
First, we use the realized kernel as a proxy for actual volatility. Barndorff-
Nielsen et al. (2008) introduced the realized kernel and it has some robustness to
market microstructure noise. The realized kernels of the return series are avail-
able in the ‘Oxford-Man Institute’s realised library’ database produced by Heber
et al. (2009).

Second, we use the QLIKE loss function defined as

L(σ̂2
t ,σ

2
t ) =

σ2
t

σ̂2
t
− log

σ2
t

σ̂2
t
−1
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where
(
σ2

t
)

is the proxy for actual volatility and
(
σ̂2

t
)

is the within-sample or
out-of-sample volatility forecast. Even if realized measures are known to be
better measures, they are imperfect and noisy proxies for actual volatility. There
has been research on loss functions that are robust to the use of a noisy volatility
proxy (see Hansen and Lunde (2006), Patton (2010) and Patton and Sheppard
(2009)). Patton (2010) shows that the QLIKE loss function is robust and, in
particular, Patton and Sheppard (2009) show in their simulation study that the
QLIKE loss function has the highest power.

Third, the significance of any difference in the QLIKE loss is tested via a
Diebold-Marinao and West (DMW) test. See Diebold-Marinao (1995) and West
(1996). A DMW statistic is computed using the difference in the losses of two
models

dt = L(σ̂2
t,base,σ

2
t )−L(σ̂2

t,QA,σ
2
t )

DMWT =

√
T d̄T√

âvar
(√

T d̄T
) (4)

where d̄T is the sample mean of dt and T is the number of forecasts. The asymp-
totic variance of the average is computed using a Newey-West variance estimator
with the number of lags set to

[
T 1/3

]
. If DMWT is positive, it means that the QA

model has a smaller loss than the base model. The DMW test for equal pre-
dictability is for

H0 : E [dt ] = 0

and the asymptotic distribution of the test statistic is standard normal under the
null hypothesis.

4.3. FORECAST EVALUATION RESULTS

We first compare fitted values of volatility for the entire sample period. Ta-
ble 6 shows the DMW test results for each series. In all cases, the DMW test
statistics are positive and statistically significant at the 1% level. This shows that
the QA model significantly outperforms the GJR-GARCH model.

Next we compare one-step ahead out-of-sample forecasts. We adopt the
rolling window procedure with a moving window of eight years (2016 days)
and produce one-step ahead out-of-sample forecasts. The forecast period and
number of forecasts for each series are given in Table 7.

The second row in Table 6 shows the DMW test results for the out-of-sample
forecasts. The results are similar to those for the in-sample comparison. The QA
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model significantly outperforms the GJR-GARCH model. Both in-sample and
out-of-sample comparison results show that a simple augmented model using
quantile dependence and directional predictability from the US market can sig-
nificantly improve volatility forecasting.

Remark 1: Instead of a lower or upper quantile event in y2,t−1, one may use
a lower or upper quantile event in ε̂2,t−1 that is the standardized residual of the
GJR-GARCH model for y2,t−1. Accordingly, we can adjust f1,t as follows:

f1,t (δ ) = δ0 +δ1ε̂
2
2,t−1I(ε̂2,t−1 ≤ q2 (0.05))+δ2ε̂

2
2,t−1I(ε̂2,t−1 ≥ q2 (0.95))

where q2 (0.05) or q2 (0.95) are 0.05 or 0.95 quantile of ε̂2,t , respectively. We
still obtain similar results. For all cases, the QA model significantly outperforms
the base model in both in-sample and out-of-sample forecasts.

Remark 2: We consider two different base models instead of the GJR-
GARCH model and conduct the same in-sample and out-of-sample forecast eval-
uations. One is the GJR-GARCH model with t-distribution, in which the innova-
tion ε1,t follows the t-distribution. The other is the HEAVY model by Shephard
and Sheppard (2010). Specifically, we use their HEAVY-r model:

y1,t = σ1,tε1,t

σ
2
1,t = ω +βσ

2
1,t−1 +πRM1,t−1

where RM1,t is the realized volatility measure of y1,t at time t. Shephard and
Sheppard (2010) and Hansen et al. (2012) show that this GARCH-X type model
using a realized volatility measure as the covariate performs better than the stan-
dard GARCH model. Following Shephard and Sheppard (2010), we use the
realized kernel as RM1,t . Tables 8 and 9 show the results of in-sample and out-
of-sample forecast comparisons using the alternative base models. They show
that the quantile-augmented approach still significantly improves volatility fore-
casting.

Remark 3: We investigate whether the additive GARCH-X model given in
(3) provides better in-sample and out-of-sample forecasts than the GJR-GARCH
model. It should be noted that the QA model uses the information of lower or
upper quantile events in the US stock market, and so does the additive GARCH-
X model. If one wants to exploit directional predictability from lower or upper
quantile events in the US market, the additive GARCH-X model would be a typ-
ical approach to be adopted. The QA model augments the conditional variance
of y1,t in a multiplicative way as σ2

1,t = h1,t × f1,t , instead of the usual additive
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way as in the additive GARCH-X model, because of the cross-quantilogram re-
sults of devolatized return series in Section 3.3. While both models use the same
information, it is shown that the additive GARCH-X model is not as effective as
the multiplicative approach in the QA model. Table 10 shows that the DMW test
statistics between the additive GARCH-X model and the GJR-GARCH model
are insignificant in both in-sample and out-of-sample cases, except for the Nikkei
index.

Remark 4: In addition to one-step ahead (N = 1) out-of-sample forecasts,
we consider multi-step ahead (N = 5 and N = 10) forecasts. We let var(y1,T+h|FT )
denote the h-step ahead (pointwise) volatility forecast, and the N-step ahead cu-
mulative forecast is defined as

var (y1,T+1 + y1,T+2 + · · ·+ y1,T+N |FT ) =
N

∑
h=1

var(y1,T+h|FT ), N = 5,10

where T is the last day of the moving window of 2016 days and FT contains
all available information at time T. Table 11 shows that the QA model provides
superior multi-step ahead forecasts than the base model. For all cases, the DMW
test statistics are positive and significant.

Remark 5: In addition to the estimation window of eight years (2016 days),
we try various estimation windows in the rolling window forecasting procedure.
Since there are approximately 252 days in a year, we consider 4 years, 5 years
and 6 years for window sizes. For each window size adopted, we produce one-
step ahead out-of-sample forecasts and calculate the DMW test statistic. The
results are reported in Table 12. When the estimation window size is large
(1512 days or 1260 days), the QA model still significantly outperforms the GJR-
GARCH model. However, for a smaller estimation window size (1008 days),
the DMW test cannot reject the null hypothesis of equal predictability. When
the estimation window size is 1008, there are only approximately 50 observa-
tions for quantile range τ1=[0,0.05] or [0.95,1.0] and this may indicate that there
must be sufficient number of observations so that the QA model significantly
outperforms a base model.

Remark 6: We apply the same quantile-augmented approach in volatility
modeling of the US stock return. For the US stock return y2,t , we consider

y2,t =
√

h2,t f2,tη2,t

where h2,t is the GJR-GARCH model, η2,t is iid (0,1) and

f2,t = δ0 +δ1y2
1,t−1I(y1,t−1 ≤ q1 (0.05))+δ2y2

1,t−1I(y1,t−1 ≥ q1 (0.95)).
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y1,t is the stock return of one of the markets in the UK, Germany, France and
Japan, and q1 (0.05) and q1 (0.95) are the 0.05 and 0.95 quantile of y1,t , respec-
tively. Since the cross-quantilogram analysis in Section 3 shows that there is no
quantile dependence or directional predictability from each market (UK, Ger-
many, France or Japan) to the US market after devolatizing, there is no reason
to expect that the QA model outperforms the base model in this case. When
we compare in-sample forecasts, the QA model does not provide any significant
improvement: DMW test statistics are either insignificantly positive or signifi-
cantly negative. This confirms that the quantile-augmented approach should be
based on the quantile dependence or directional predictability revealed in cross-
quantilogram analysis.

Remark 7: We produce one-step ahead out-of-sample forecasts for the pe-
riod from January 2008 to December 2009 and conduct forecast evaluation for
the crisis period. The QA model with

f1,t (δ ) = δ0 +δ1y2
2,t−1I(y2,t−1 ≤ q2 (0.05))6

still provides smaller forecast losses than the GJR-GARCH model for FTSE,
DAX and CAC but the null hypothesis of equal predictability is not rejected at
the 5% significance level for each case. The cross-quantilogram analysis for the
period from January 2007 to December 20107 shows that there may not exist
directional predictability in the lower-quantile from the US stock market to the
European stock markets for the period. This could explain why the DMW test
statistics are insignificant for the crisis period.

5. GENERALIZED APPROACH FOR ASSET PORTFOLIOS

The results in Sections 3 and 4 can lead us to set up a generalized quantile-
based approach to improve volatility forecasting for a wide class of asset portfo-
lios. Suppose that y1,t is the log return series of a given asset portfolio and can
be modeled as

y1,t = µ1,t (zt−1)+
√

h1,t (zt−1)ε1,t for zt−1 ∈Ft−1,

where Ft is the filtration containing all available information available up to time
t and µ1,t (zt−1) and h1,t (zt−1) are the conditional mean and conditional variance
of y1,t , respectively. One can adopt the following steps to improve volatility
forecasting of y1,t .

7It should be noted that inference of the cross-quantilogram could be invalid for this period
because strict stationarity may not hold. The results are available upon request.
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1-step Model the conditional mean and conditional variance of y1,t and obtain the
standardized residual ε̂1,t ;

ε̂1,t =
y1,t −µ1,t

(
zt−1; θ̂

)√
h1,t
(
zt−1; θ̂

)
where θ̂ is the vector of estimated parameters for the models for the con-
ditional mean and conditional variance of y1,t .

2-step: Using the cross-quantilogram, find an economic/financial variable y2,t such
that there exists directional predictability from a certain quantile range[
τ l

2,τ
h
2

]
of y2,t−k to the standardized residual ε̂1,t for some k > 0.

3-step: Based on the result in the previous step, specify f1,t and modify the volatil-
ity of y1,t as h1,t(zt−1; θ̂)× f1,t . It should be noted that the specification of
f1,t must properly accommodate the result of the cross-quantilogram anal-
ysis in the previous step, particularly specific quantile range

[
τ l

2,τ
h
2

]
and

lag k of y2,t−k.

In the first step, the conditional mean µ1,t (zt−1) can be modeled as an AR
model and the conditional variance h1,t (zt−1) can be specified as a GARCH-type
model. One can use standard specification test procedures to specify them. See
Patton (2013, Section 1.1) for an empirical illustration. In the second step, it
should be noted that the cross-quantilogram analysis is conducted for a pair of
{ε̂1,t ,y2,t} not for a pair of {y1,t ,y2,t} . As we discussed in Sections 3.3, the cross-
quantilogram between y1,t and y2,t could be spuriously significant due to persis-
tence and synchronicity in the marginal volatilities of two return series. There-
fore, one or all time series should be devolatized, which means that either a pair
of {ε̂1,t ,y2,t} or {ε̂1,t , ε̂2,t} should be considered for cross-quantilogram. Here
ε̂2,t is the standardized residual of y2,t . It is shown that the cross-quantilogram
between ε̂1,t and y2,t is generally similar to that between ε̂1,t and ε̂2,t .

In the third step, the specific form of f1,t should depend on the result of the
cross-quantilogram analysis in the previous step. If the cross-quantilogram anal-
ysis shows that there exists directional predictability only from [0.9,1] quantile
range of y2,t−1 to both tails of ε̂1,t , the specific definition of f1,t should be able to
accommodate such a result and we may model f1,t as

f1,t (δ ) = δ0 +δ1y2
2,t−1I(y2,t−1 ≥ q2 (0.9)).

For example, we may consider a case where y2,t is an index presenting uncer-
tainty in the economy or financial market and y1,t is a portfolio of various stocks.



118 QUANTILE DEPENDENCE AND VOLATILITY FORECASTING

Suppose that only a rapid increase of the uncertainty index affects volatility of
the portfolio in the next day while its rapid decrease does not. In this case, there
exists directional predictability only from a high quantile range of y2,t−1 such as
[0.95,1] or [0.9,1] and a lower-quantile event of y2,t−1 should not be included in
the specification of f1,t .

It is also possible that directional predictability exists for more than one day.
If cross-quantilogram results indicate that there exists directional predictability
not only from y2,t−1 but also from y2,t−2 for [0,0.5] quantile range, it is desirable
to accommodate the directional predictability from y2,t−2 as well and we may
model f1,t as

f1,t (δ ) = δ0 +δ1y2
2,t−1I(y2,t−1 ≤ q2 (0.05))+δ2y2

2,t−2I(y2,t−2 ≤ q2 (0.05)).

While these examples adopt quite simple specifications of f1,t , one can construct
a more sophisticated specification of f1,t as long as it properly accommodate a
specific quantile range

[
τ l

2,τ
h
2

]
and lag k of y2,t−k that are revealed in the cross-

quantilogram analysis.
To obtain information for constructing f1,t , the cross-quantilogram is not the

only available method and one may choose another method to measure depen-
dence between y2,t−k and ε̂1,t . However, as mentioned in Section 2.1, the cross-
quantilogram is much simpler and more convenient for practitioners to use than
other existing methods. One may model the dependence between y2,t−k and ε̂1,t
through a copula. However, using a copula method is more cumbersome in the
second step. One should conduct estimation of various copulas between ε̂2,t−k
(or y2,t−k) and ε̂1,t for each k for k = 1,2, · · · ,20. There may be inevitably a mis-
specification error. Moreover, an estimated and selected copula does not provide
specific quantile range

[
τ l

2,τ
h
2

]
of y2,t−k. On the contrary, the cross-quantilogram

can be easily calculated for all lag k at one time and provides a specific quantile
range of y2,t−k with directional predictability.

6. CONCLUSION

The paper examines quantile dependence and directional predictability be-
tween international stock markets and investigates how to apply these measures
in volatility forecasting. We consider dependence between the US stock return
and stock return series in the UK, Germany, France and Japan, i.e., quantile
dependence between US-UK, US-Germany, US-France and US-Japan bivariate
stock market returns. The results based on the cross-quantilogram show that
the negative spillover is in general much stronger than the positive spillover.
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We apply the cross-quantilogram on standardized residuals as well as stock re-
turn series. There exists directional predictability from the US stock market to
markets in the UK, Germany, France and Japan. In particular, lower or upper
quantile events in the US stock market influence these stock markets. However,
when standardized residuals are used, there is no directional predictability from
markets in the UK, Germany, France and Japan to the US market. Using these re-
sults on quantile dependence and directional predictability, we consider a simple
method to improve volatility forecasting in stock markets in the UK, Germany,
France and Japan. The quantile-augmented volatility model significantly im-
proves both in-sample and out-of-sample volatility forecasting, which is robust
to the choice of a base volatility model. These results lead us to set up a general-
ized quantile-based approach to improve volatility forecasting for a wide class of
asset portfolios. Recently, researchers have developed various methods to mea-
sure quantile dependence between financial time series. While little research has
explored beyond basic measurement of quantile dependence between financial
time series, this paper considers a simple method to make use of quantile depen-
dence in order to improve volatility forecasting. The quantile-based approach
discussed in this paper could be applied to a wide class of asset portfolios to
improve volatility forecasting. The information provided on detailed quantile
dependence can be used for various purposes, such as modeling univariate or
multivariate volatility and estimating value at risk. It will be also possible to
directly improve value at risk prediction by using results of cross-quantilogram
analysis. We leave it as future work to develop more sophisticated methods that
apply quantile dependence in asset allocation and risk management.
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Table 2. Sample period and sample size for each pair of stock return series

Pair of indices Sample period (sample size)
FTSE - S&P 500 21 Oct. 1997 - 31 Dec. 2007 (2470)
DAX - S&P 500 3 Jan. 1996 - 28 Dec. 2007 (2907)
CAC - S&P 500 3 Jan. 1996 - 31 Dec. 2007 (2908)
Nikkei - S&P 500 8 Jan. 1996 - 27 Dec. 2007 (2763)

Table 3. Results of the ‘usual’ Ljung-Box Q-statistic

S&P FTSE DAX CAC Nikkei
ε̂t p-value of Q(10) 0.19 0.67 0.99 0.11 0.63

p-value of Q(20) 0.17 0.55 0.86 0.39 0.80
ε̂2

t p-value of Q(10) 0.81 0.59 0.08 0.31 0.39
p-value of Q(20) 0.70 0.28 0.19 0.25 0.35

Note: The table reports the Ljung-Box Q-statistic on ε̂t or ε̂2
t , where ε̂t is the standard-

ized residual from the GJR-GARCH model.

Table 4. Cross-quantilograms at the first lag from the US market to other markets

τ1 (= τ2) FTSE DAX CAC Nikkei
Return [0,0.05] 0.25∗ 0.17∗ 0.20∗ 0.18∗

[0.95,1] 0.13∗ 0.12∗ 0.11∗ 0.21∗

Std. residual [0,0.05] 0.16∗ 0.14∗ 0.14∗ 0.14∗

[0.95,1] 0.04 0.06∗ 0.03 0.15∗

Note: The table reports ρ̂τ(1), a sample cross-quantilogram at the first lag, from the US
stock market to other stock markets, i.e., y1,t is the return series of FTSE, DAX, CAC
or Nikkei and y2,t−1 is the S&P 500 index return. The second and third rows are the
cases where stock return series are used. The fourth and fifth rows are the cases where
standardized residuals from the GJR-GARCH model are used. ∗ indicates significance
at the 5% level.



122 QUANTILE DEPENDENCE AND VOLATILITY FORECASTING

Table 5. Cross-quantilograms at the first lag from other markets to the US market

τ1 (= τ2) FTSE DAX CAC Nikkei
Return [0,0.05] 0.06∗ 0.08∗ 0.06∗ 0.05∗

[0.95,1] 0.03 0.06∗ 0.06 -0.01

Std. residual [0,0.05] 0.02 0.01 -0.00 0.02
[0.95,1] -0.02 -0.01 0.01 -0.04∗

Note: The table reports ρ̂τ(1), a sample cross-quantilogram at the first lag, from each
stock market to the US stock market, i.e., y1,t is the S&P 500 index return and y2,t−1 is
the return series of FTSE, DAX, CAC or Nikkei. Same as Table 4.

Table 6. DMW test results against GJR-GARCH model

FTSE DAX CAC Nikkei
In-sample 3.29∗∗∗ 3.13∗∗∗ 4.03∗∗∗ 3.59∗∗∗

Out-of-sample 7.67∗∗∗ 10.88∗∗∗ 12.90∗∗ 10.01∗∗∗

Note: The table reports the DMW statistics given in (4). The base model is the GJR-
GARCH model. A positive DMW statistic means that the quantile-augmented model
has a smaller forecast loss. ∗, ∗∗ and ∗∗∗ indicate that the null hypothesis of equal pre-
dictability between the base model and the quantile-augmented model is rejected at the
10%, 5% and 1% significance level, respectively.

Table 7. Out-of-sample forecast period and number of forecasts

Index Forecast period (number of forecasts)
FTSE 2 Mar. 2006 - 31 Dec. 2007 (454 forecasts)
DAX 1 June 2004 - 31 Dec. 2007 (891 forecasts)
CAC 2 June 2004 - 31 Dec. 2007 (892 forecasts)
Nikkei 29 Oct. 2004 - 31 Dec. 2007 (746 forecasts)

Note: The table reports the out-of-sample forecast period and number of forecasts for
each return series. For each return series, one-step ahead out-of-sample forecasts are
produced via the rolling window procedure with a moving window of eight years (2016
days).
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Table 8. DMW test results against GJR-GARCH model with t-distribution

FTSE DAX CAC Nikkei
In-sample 2.96∗∗∗ 2.85∗∗∗ 3.96∗∗∗ 2.91∗∗∗

Out-of-sample 7.28∗∗∗ 8.71∗∗∗ 12.56∗∗∗ 8.98∗∗∗

Note: The base model is the GJR-GARCH model with t-distribution. Same as Table 6.

Table 9. DMW test results against HEAVY-r model

FTSE DAX CAC Nikkei
In-sample 3.78∗∗∗ 3.20∗∗∗ 4.86∗∗∗ 2.89∗∗∗

Out-of-sample 7.22∗∗∗ 8.19∗∗∗ 10.84∗∗∗ 8.43∗∗∗

Note: The base model is the HEAVY-r model by Shephard and Sheppard (2010). Same
as Table 6.

Table 10. DMW test results between additive GARCH-X model and GJR-GARCH
model

FTSE DAX CAC Nikkei
In-sample 1.52 0.62 1.28 2.30∗∗

Out-of-sample 1.17 −0.79 0.63 6.60∗∗∗

Note: The table reports the DMW statistics given in (4) where dt= L(σ̂2
t,base,σ

2
t )−L(σ̂2

t,Additive,σ
2
t ).

The base model is the GJR-GARCH model and σ̂2
t,Additive is in-sample or out-of-sample

forecast of the additive GARCH-X model described in (3). Same as Table 6.

Table 11. DMW test results for multi-step ahead out-of-sample forecasting

FTSE DAX CAC Nikkei
5-step ahead pointwise 2.04∗∗ 7.02∗∗∗ 8.35∗∗∗ 10.82∗∗∗

5-step ahead cumulative 3.96∗∗∗ 8.80∗∗∗ 10.73∗∗∗ 9.04∗∗∗

10-step ahead pointwise 1.67∗ 7.23∗∗∗ 8.35∗∗∗ 8.58∗∗∗

10-step ahead cumulative 2.74∗∗∗ 8.03∗∗∗ 9.65∗∗∗ 9.64∗∗∗

Note: The base model is the GJR-GARCH model. Same as Table 6.
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Table 12. DMW test results for various estimation windows

Window size FTSE DAX CAC Nikkei
1008 (4 years) 0.25 −1.40 0.76 0.97
1260 (5 years) 9.71∗∗∗ 1.40 2.83∗∗∗ 4.50∗∗∗

1512 (6 years) 11.20∗∗∗ 3.17∗∗∗ 3.25∗∗∗ 9.19∗∗∗

Note: The base model is the GJR-GARCH model. For each window size adopted, we
produce one-step ahead out-of-sample forecasts and calculate the DMW test statistic.
Same as Table 6.
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Figure 1. Event {yi,t< qi,t(τ i)}. The left figure describes an event {y1,t< q1,t(τ1)} for
τ1= 0.05 and the right figure provides an event {y2,t−k< q2,t−k(τ2)} for τ2= 0.5.

Figure 2. Event {qi,t(τ
l
i)< yi,t< qi,t(τ

h
i )}. The figures describe various events

{qi,t(τ
l
i)< yi,t< qi,t(τ

h
i )} for different quantiles for τ l

i and τh
i . The top left figure provides a

upper-quantile event and the top right figure gives a mid-range event. The bottom figures
present events for the left and right shoulders of the distribution.
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Figure 3. Scatter plots of various colulas
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Figure 4(a). [US] Auto-quantilogram ρ̂τ(k) of the S&P 500 index return series. τ1 is
the quantile range. Bar graphs describe sample quantilograms and lines are the 95%
bootstrap confidence intervals centered at zero.
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Figure 4(b). [US] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k). Same as

Figure 1(a). The dashed lines are the 95% bootstrap confidence intervals centered at
zero.
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Figure 5(a). [UK] Auto-quantilogram ρ̂τ(k) of the FTSE index return series. Same as
Figure 1(a).
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Figure 5(b). [UK] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k). Same as

Figure 1(b).
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Figure 6(a). [US to UK] Cross-quantilogram ρ̂τ(k) to detect directional predictability
from US to UK. τ1=τ2. Same as Figure 1(a).
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Figure 6(b). [US to UK] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k). Same

as Figure 1(b).
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Figure 7(a). [UK to US] Cross-quantilogram ρ̂τ(k) to detect directional predictability
from UK to US τ1=τ2. Same as Figure 1(a).
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Figure 7(b). [UK to US] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k). Same

as Figure 4(b).
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Figure 8(a). [US, std. residual] Auto-quantilogram ρ̂τ(k) of the S&P 500 index return
series using the standardized residual from the GJR-GARCH model. τ1=τ2. Same as
Figure 1(a).
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Figure 8(b). [US, std. residual] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k).

Same as Figure 1(b).
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Figure 9(a). [UK, std. residual] Auto-quantilogram ρ̂τ(k) of the FTSE index return
series using the standardized residual from the GJR-GARCH model. τ1=τ2. Same as
Figure 1(a).

0 10 20
0

20

40

P
o
rt

m
a
n
te

a
u

τ
1
 = [0, 0.05]

0 10 20
0

50

τ
1
 = [0.05,  0.1]

0 10 20
0

20

40

τ
1
 = [0.1,  0.2]

0 10 20
0

20

40

P
o
rt

m
a
n
te

a
u

τ
1
 = [0.2,  0.4]

0 10 20
0

20

40

τ
1
 = [0.4,  0.6]

0 10 20
0

20

40

τ
1
 = [0.6,  0.8]

0 10 20
0

50

Lag

P
o
rt

m
a
n
te

a
u

τ
1
 = [0.8,  0.9]

0 10 20
0

50

Lag

τ
1
 = [0.9,  0.95]

0 10 20
0

20

40

Lag

τ
1
 = [0.95,  1.0]

Figure 9(b). [UK, std. residual] Box-Ljung test statistic Q̂(p)
τ for each lag p using ρ̂τ(k).

Same as Figure 1(b).
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Figure 10(a). [US to UK, std. residual] Cross-quantilogram ρ̂τ(k) to detect directional
predictability from US to UK using the standardized residual from the GJR-GARCH
model. τ1=τ2. Same as Figure 1(a).
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Figure 10(b). [US to UK, std. residual] Box-Ljung test statistic Q̂(p)
τ for each lag p

using ρ̂τ(k). Same as Figure 1(b).



HEEJOON HAN 135

0 10 20
−0.1

0

0.1

0.2

Q
u
a
n
til

o
g
ra

m

τ
1
 = [0,  0.05]

0 10 20
−0.1

0

0.1

0.2

τ
1
 = [0.05,  0.1]

0 10 20
−0.1

0

0.1

0.2

τ
1
 = [0.1,  0.2]

0 10 20
−0.1

0

0.1

0.2

Q
u
a
n
til

o
g
ra

m

τ
1
 = [0.2,  0.4]

0 10 20
−0.1

0

0.1

0.2

τ
1
 = [0.4,  0.6]

0 10 20
−0.1

0

0.1

0.2

τ
1
 = [0.6,  0.8]

0 10 20
−0.1

0

0.1

0.2

Lag

Q
u
a
n
til

o
g
ra

m

τ
1
 = [0.8,  0.9]

0 10 20
−0.1

0

0.1

0.2

Lag

τ
1
 = [0.9,  0.95]

0 10 20
−0.1

0

0.1

0.2

Lag

τ
1
 = [0.95,  1.0]

Figure 11(a). [UK to US, std. residual] Cross-quantilogram ρ̂τ(k) to detect directional
predictability from UK to US using the standardized residual from the GJR-GARCH
model. τ1=τ2. Same as Figure 1(a).
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Figure 11(b). [UK to US, std. residual] Box-Ljung test statistic Q̂(p)
τ for each lag p

using ρ̂τ(k). Same as Figure 1(b).
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Figure 12(a). [US to Japan] Cross-quantilogram ρ̂τ(k) to detect directional predictabil-
ity from US to Japan. τ1=τ2. Same as Figure 1(a).
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Figure 12(b). [US to Japan, std. residual] Cross-quantilogram ρ̂τ(k) to detect directional
predictability from US to Japan using the standardized residual from the GJR-GARCH
model. τ1=τ2. Same as Figure 1(a).
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Figure 13(a). [US to UK, from the lower-quantile] Cross-quantilogram ρ̂τ(k) to detect
directional predictability from US to UK. τ1 6= τ2 and τ2=[0,0.05] where τ2 is the
quantile range of US the stock return. Same as Figure 1(a).
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Figure 13(b). [US to UK, from the upper-quantile] Cross-quantilogram ρ̂τ(k) to detect
directional predictability from US to UK. τ1 6= τ2 and τ2=[0.95,1] where τ2 is the
quantile range of the US stock return. Same as Figure 1(a).
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Figure 14(a). [US to UK, std. residual, from the lower-quantile] Cross-quantilogram
ρ̂τ(k) from US to UK using the standardized residual from the GJR-GARCH model.
τ1 6= τ2 and τ2=[0,0.05] where τ2 is for the US stock return. Same as Figure 1(a).
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Figure 14(b). [US to UK, std. residual, from the upper-quantile] Cross-quantilogram
ρ̂τ(k) from US to UK for τ1 6= τ2 and τ2=[0.95,1]. Same as Figure 13(a).
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Schmitt, T.A., R. Schäfer, H. Dette and T. Guhr (2015) Quantile correlation: Uncov-
ering temporal dependencies in financial time series, Journal of Theoretical
and Applied Finance, forthcoming.

Shahzad, S.J.H., N. Naifar, S. Hammoudeh and D. Roubaud (2017) Directional pre-
dictability from oil market uncertainty to sovereign credit spreads of oil-
exporting countries: Evidence from rolling windows and cross-quantilogram
analysis, Energy Economics, forthcoming.

Sim, N. and H. Zhou (2015) Oil prices, US stock return, and the dependence between
their quantiles, Journal of Banking & Finance, 55, 1-8.

Shephard, N. and K. Sheppard (2010), Realising the future: Forecasting with high fre-
quency based volatility (HEAVY) models, Journal of Applied Econometrics,
25, 197-231.

Todorova, N. (2017) The intraday directional predictability of large Australian stocks:
A cross-quantilogram analysis, Economic Modelling, 64, 221-230.

West, K.D. (1996) Asymptotic inference about predictive ability, Econometrica, 64,
1067-1084.

Yifan, S. (2017) International risk transmission of stock market movements, Economic
Modelling, forthcoming.


	1 Introduction
	2 Measure of Quantile Dependence
	2.1 Cross-Quantilogram and Its Advantages
	2.2 Copula and Cross-Quantilogram

	3 Quantilogram Analysis
	3.1 Data and Setup
	3.2 Auto-Quantilogram and Cross-Quantilogram
	3.3 Results of Devolatized Return Series
	3.4 Results of Cross-Quantile Ranges

	4 Application in Volatility Forecasting
	4.1 Quantile-Augmented Volatility Model
	4.2 Forecast Evaluation Method
	4.3 Forecast Evaluation Results

	5 Generalized Approach for Asset Portfolios
	6 Conclusion
	A Tables and Figures

